Биологическая система. Биологическая система Свойства организма как биосистемы

Введение

Экологией в настоящее время принято называть науку о «собственном доме» человека -- биосфере, ее особенностях, взаимодействии и взаимосвязи с человеком, а человека -- со всем человеческим обществом. Экология является не только интегрированной дисциплиной, где оказываются связанными физические и биологические явления, она образует своеобразный мост между естественными и общественными науками.

Основной целью выполнения контрольной работы является изучение предмета экология.

Для этого необходимо:

  • - раскрыть понятие биосистемы Земли и ступени ее развития, раскрыть организованность биосистем и их свойства;
  • - рассмотреть характеристики видов, относящихся к r-модели популяционной динамики;
  • - дать определение загрязнения окружающей среды, раскрыть основные виды и типы загрязнения, их источники и степень влияния на окружающую среду;
  • - изучить санитарно-гигиеническое нормирование окружающей среды, раскрыть основные принципы санитарно-гигиенического нормирования, а так же недостатки системы санитарно-гигиенического нормирования.

Биосистемы Земли, ступени иерархии биосистем

Биосистемы - это биологические системы, в которых биотические компоненты разных уровней организации упорядоченно взаимодействуют с окружающей физической средой, т.е. с абиотическими компонентами (энергией и веществом), составляя единое целое. Основных уровней семь:- молекулярный;- клеточный;- тканевый;- организменный;- популяционно-видовой; биогеоценотический;- биосферный. Иерархическая организованность биосистем иллюстрирует непрерывность и дискретность эволюции жизни. Развитие - процесс непрерывный, но и дискретный, поскольку изменения проходят через ряд отдельных уровней организации. Деление иерархии на ступени условно, т.к. каждый уровень интегрирован, т.е. связан с соседними уровнями в функциональном смысле. Например, гены не могут функционировать в природе вне клетки, клетки многоклеточных - вне органов, органы - вне организма и т. д. Сообщество не может существовать, если в нем не происходит круговорот веществ и не поступает энергия извне. Экосистема не жизнеспособна без взаимосвязи с популяционными системами и биосферой в целом. По тем же причинам человеческая цивилизация не может существовать вне мира природы. Биосистемы разных уровней являются предметом изучения различных дисциплин. Системы, которые расположены выше уровня организмов, т.е. популяционные системы, экосистемы и биосферу, изучает экология.

Самое важное следствие иерархической организации живой природы состоит в том, что по мере объединения подсистем в более крупные функциональные единицы у этих новых систем возникают уникальные свойства, которых не было на предыдущем уровне. В экологии эти качественно новые свойства называют эмерджентными (англ. Неожиданно появляющиеся). Их нельзя предсказать на основании свойств подсистем низшего порядка, составляющих систему более высокого уровня организации. Таким образом, суть принципа эмерджентности заключается в том, что биологические системы обладают свойствами, которые нельзя свести к сумме свойств составляющих их подсистем.

В экологии организм рассматривается как целостная система, взаимодействующая с внешней средой, как абиотической, так и биотической. В этом случае в наше поле зрения попадает такая совокупность, как биологический вид, состоящий из исходных особей, которые, тем не менее, как индивидуумы отличаются друг от друга. Но всех их объединяет единый для всех генофонд, обеспечивающий их способность к размножению в пределах вида. Поскольку каждый отдельный индивид имеет свои специфические особенности, то и отношение их к состоянию среды, к воздействию ее факторов различное. Например, повышение температуры часть особей может не выдержать и погибнуть, но популяция всего вида выживает за счет других, более приспособленных.

Популяция - сложная генетическая система. Для каждой популяции характерны определенная численность особей, соотношение самцов, самок и особей разных возрастных групп (новорожденных, молодых, взрослых, старых), частота вариаций разных признаков. Например, в северных популяциях одного вида - прыткой ящерицы все самцы коричневые, в южных - зеленые, а в средней полосе можно встретить в одной популяции и коричневых и зеленых. Сотни и тысячи поколений - обычное время существования отдельных популяций. Иногда возникают мелкие группы особей, которые существуют 2-3 поколения, но это не настоящие популяции. Ни отдельная особь, ни даже мелкая группа особей вроде семьи не может существовать в процессе эволюции долго. Популяция - минимальная группа особей, обладающая собственной эволюционной судьбой. Для любой популяции характерны колебания численности составляющих ее особей. Причин этому множество: обилие или недостаток пищи, изменение климата, враги и др.

Биоценоз представляет собой - совокупность растений, животных, грибов и микроорганизмов, совместно населяющих участок земной поверхности и характеризующихся определенными отношениями как друг с другом, так и с совокупностью абиотических факторов. Составными частями биоценоза являются фитоценоз (совокупность растений), зооценоз (совокупность животных), микоценоз (совокупность грибов) и микробоценоз (совокупность микpoopганизмов). Синоним биоценоза - сообщество.

Участок земной поверхности (суши или водоема) с однотипными абиотическими условиями (рельефом, климатом, почвами, характером увлажнения и др.), занимаемый тем или иным биоценозом, называется биотопом (от греч. topos - место). В пространственном отношении биотоп соответствует биоценозу. Биотоп, с которым связаны обитающие здесь организмы и условия их существования, подвергается изменениям со стороны биоценоза. Однородность климатических условий биоценоза определяет климатоп, почвенно-грунтовых - эдафотоп, увлажнения - гидротоп.

Биотоп и биоценоз являются составными частями экосистемы - природного комплекса, образованного живыми организмами (биоценозом) и средой их обитания (биотопом), которые связаны между собой обменом веществ и энергией. Экосистема не имеет строгой таксономической определенности, и ею могут быть объекты разной сложности и размерности - от кочки до материка, от небольшого водоема до Мирового океана. Вместе с тем экосистема - основная функциональная и структурная природная система биосферы, так как ее составляют взаимозависимые организмы и абиотическая среда, поддерживающие жизнь в той форме, в какой она существует на Земле. Каждый биоценоз есть система, включающая множество экологически и биологически различных видов, которые возникли в результате отбора и способны существовать совместно в конкретных природных условиях. Видовой состав биоценоза представляет собой систематизированную совокупность видов растений, животных, грибов и микроорганизмов, свойственных данному биоценозу. Видовой состав фитоценоза более или менее постоянен по сравнению с зооценозом, так как животные перемещаются. Учет грибов и микроорганизмов из-за чрезмерного видового обилия или их микроскопических размеров затруднен. Наибольшим видовым разнообразием отличаются биоценозы влажных тропических лесов, наименьшим - полярных ледяных пустынь.

Среди наземных биоценозов в этом плане богаты цветковые растения, несколько меньше видовая насыщенность грибов, насекомых, еще меньше - птиц, млекопитающих и других представителей фауны. В тундре наибольшее видовое разнообразие у мхов и лишайников. Чем большую территорию занимает биоценоз и чем благоприятнее экологические условия, тем больше видовой - состав. При большом видовом составе речь идет о флористическом и фаунистическом богатстве. Виды, преобладающие в биоценозе, называются доминантами. Различают постоянные и временные доминанты. Последние господствуют лишь на протяжении небольшого периода вегетации, сменяясь другими, также временными доминантами. Причем доминанты верхнего яруса имеют большее экологическое значение, чем нижних. В ярусе может находиться другой вид, имеющий важное, но меньшее, чем доминанта, значение,- субдоминанта. Так, в сосняке березово-черничном субдоминантой является береза, если она вместе с сосной образует древесный ярус. Второстепенные виды (ассектаторы) входят в состав различных ярусов. В биоценозе можно встретить и растения-антропофиты, проникшие в фитоценоз в результате сознательного или случайного заноса их человеком. Доминанты, определяющие характер и строй биоценоза, называются эдификаторами (строителями). В основном это те растения, которые создают внутреннюю биотическую среду сообщества: в сосновом лесу - сосна, дубраве - дуб, ковыльной степи - ковыль и т.д.. Субэдификаторами являются, как правило, субдоминанты.

Биоценоз характеризуется вертикальной и горизонтальной структурой. Вертикальное строение биоценоза находит отражение в ярусности - вертикальном расчленении сообщества организмов на достаточно, четко ограниченны горизонты деятельности. Ярусность в первом приближении связана со средой обитания организмов. Так, можно выделить виды, обитающие в воздушной среде, гидросфере, литосфере, почвенной среде и на границе сред. В данном случае ярусность есть проявление вертикального расчленения биосферы на ее структурные сферы. Подземная ярусность биоценоза отражает вертикальное распределение корневых систем растений фитоценоза. Наличие подземной ярусности фитоценоза обеспечивает наиболее продуктивное использование почвенной влаги: в одном и том же местообитании растут растения различных гигроэкологических групп - от ксерофитов до гигрофитов. Ярусность фитоценоза имеет большое экологическое значение. Она - результат длительного и сложного процесса межвидовой конкуренции и взаимного приспособления растений друг к другу. Благодаря ей фитоценоз образует виды, весьма различные по своей экологии и имеющие различные жизненные формы (дерево, кустарник, трава, мох и т. д.). Горизонтальная структура биоценоза отражена в синузиях (от греч. synusia - совместное пребывание, сообщество) - пространственно и экологически отграниченных друг от друга частях фитоценоза, состоящих из видов растений одной или нескольких экологически близких жизненных форм. Если ярус - морфологическое понятие, то синузия - экологическое. Она может совпадать с ярусом и может составлять только часть его. Расчленение древесного яруса на синузии можно наблюдать, если осенью подняться высоко над лесным массивом: темнохвойные ели и светло-хвойные сосны сменяются пожелтевшими березами, красноватыми осинами и побуревшими дубами. Кроме того, в синузиях отражена мозаика экологических факторов формирования растительного сообщества: сосна оккупировала сухие песчаные почвы, ель - более влажные супесчаные и суглинистые, береза и осина - вырубки, а дуб - наиболее плодородные почвы.

Они могут быть постоянными (сессильными) и временными (вагильными).

В целом сообществу присуща суточная, сезонная (годичная) и многолетняя динамика, свойственная как растениям, так и животным. Суточная, вызываемая сменой светлой и темной части суток, у растений проявляется в интенсивности фотосинтеза, дыхания, раскрывании и закрывании цветков, у животных -- в разной суточной активности (дневные, сумеречные и ночные).

Сезонная динамика биоценоза зависит от фенологического состояния фитоценоза, видового состава и численности обитающих в нем животных. Каждый вид растительных организмов в течение вегетационного периода проходит определенные стадии развития (начало вегетации, цветение, плодоношение и отмирание). В фитоценозе, состоящем из множества видов, фазы развития растений могут совпадать и не совпадать.

Сезонная динамика животных представителей биоценоза связана с их размножением, жизненной активностью и миграциями. Весенний прилет и осенний отлет птиц, нерест рыб, появление молодняка, активность насекомых-опылителей на лугах, зимняя спячка медведя только ничтожно малая часть примеров сезонной динамики животного населения биоценоза.

От животных -детритофагов редуценты отличаются прежде всего тем, что не оставляют твёрдых непереваренных остатков (экскрементов). Редуценты возвращают минеральные соли в почву и воду, делая их доступными для продуцентов - автотрофов, и таким образом замыкают биотический круговорот. Поэтому экосистемы не могут обходиться без редуцентов (в отличие от консументов, которые, вероятно, отсутствовали в экосистемах в течение первых 2 млрд лет эволюции, когда экосистемы состояли из одних прокариот).

Подробное решение параграф Подведите итог 2 главы по биологии для учащихся 11 класса, авторов И.Н. Пономарева, О.К. Корнилова, Т.Е. Лощилина, П.В. Ижевский Базовый уровень 2012

  • Гдз по Биологии за 11 класс можно найти
  • Гдз рабочая тетрадь по Биологии за 11 класс можно найти

1. Сформулируйте определение биосистемы «клетка». .

Клетка – элементарная живая система, основная структурная единица живых организмов, способная к самовозобновлению, саморегуляции и самовоспроизведению.

2. Почему клетку называют основной формой жизни и элементарной единицей жизни?

Клетка – основная форма жизни и элементарной единицей жизни, потому что любой организм состоит из клеток, а самый маленький организм является клеткой (простейшие). Отдельные органеллы за пределами клетки жить не могут.

На клеточном уровне происходят следующие процессы: обмен веществ (метаболизм); поглощение и, следовательно, включение различных химических элементов Земли в содержимое живого; передача наследств венной информации от клетки к клетке; накопление изменений в генетическом аппарате в результате взаимодействия со средой; реагирование на раздражения при взаимодействии с внешней средой. Структурными элементами системы клеточного уровня являются разнообразные комплексы молекул химических соединений и все структурные части клетки - поверхностный аппарат, ядро и цитоплазма с их органоидами. Взаимодействие между ними обеспечивает единство, целостность клетки в проявлении её свойств как живой системы в отношениях с внешней средой.

3.Поясните механизмы устойчивости клетки как биосистемы.

Клетка – элементарная биологическая система, а любая система-это комплекс взаимосвязанных и взаимодействующих компонентов, составляющих единое целое. В клетке этими компонентами являются органоиды. Клетка способна к обмену веществ, саморегуляции и самообновлению, благодаря чему и поддерживается ее устойчивость. Вся генетическая программа клетки находится в ядре, а различные отклонения от нее воспринимаются ферментативной системой клетки.

4. Сравните клетки эукариот и прокариот.

Все живые организмы на Земле делятся на две группы: прокариоты и эукариоты.

Эукариоты – это растения, животные и грибы.

Прокариоты – это бактерии (в том числе цианобактерии (сине-зеленые водоросли).

Главное отличие. У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид). У эукариот есть оформленное ядро (наследственная информация [ДНК] отделена от цитоплазмы ядерной оболочкой).

Другие отличия.

Раз у прокариот нет ядра, то нет и митоза/мейоза. Бактерии размножаются делением надвое, почкованием

У эукариот различное кол-во хромосом, в зависимости от вида. У прокариот единственная хромосома (кольцевидной формы).

У эукариот присутствуют органоиды, окруженные мембранами. У прокариот отсутствуют органоиды, окруженные мембранами, т.е. нет эндоплазматической сети (ее роль выполняют многочисленные выступы клеточной мембраны), нет митохондрий, нет пластид, нет клеточного центра.

Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

Сходство. Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы.

5. Охарактеризуйте внутриклеточную структуру эукариот.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды: цитоплазматическая мембрана (ЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон на разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

6. Каким образом реализуется принцип «клетка - от клетки»?

Размножение прокариотических и эукариотических клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (редупликация ДНК).

У эукариотических клеток единственно полноценным способом деления является митоз (или мейоз при образовании половых клеток). При этом образуется специальный аппарат клеточного деления - клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы, до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических, как растительных, так и животных клеток.

Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот. Также деля материнскую клетку надвое.

7. Охарактеризуйте фазы и значение митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Биологическое значение митоза состоит в том, что он обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

8. Что представляет собой клеточный цикл?

Клеточный цикл (митотический цикл) - это весь период существования клетки с момента появления в процессе деления материнской клетки до ее собственного деления (включая и само деление) или гибели. Он состоит из интерфазы и деления клетки.

9. Какую роль в эволюции организмов выполнила клетка?

Клетка дала начало дальнейшего развития органического мира. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, зародилась многоклеточность, возникла специализация клеток, появились клеточные ткани.

10. Назовите основные процессы жизнедеятельности клетки.

Обмен веществ – в клетку поступают питательные вещества, а удаляются ненужные. Движение цитоплазмы – транспортирует вещества в клетке. Дыхание – в клетку поступает кислород, удаляется углекислый газ. Питание - в клетку поступают питательные вещества. Рост - клетка увеличивается в размерах. Развитие – строение клетки усложняется.

11. Укажите значение митоза и мейоза в эволюции клетки.

Благодаря митотическому делению клеток идет индивидуальное развитие организма - увеличивается его рост, обновляются ткани, заменяются постаревшие и отмершие клетки, осуществляется бесполое размножение организмов. Также обеспечивается постоянство кариотипов особей вида.

Благодаря мейозу происходит кроссинговер (обмен участками гомологичных хромосом). Это способствует перекомбинации генетической информации, и образуются клетки с совершенно новым набором генов (разнообразие организмов).

12. Какие важнейшие события в развитии живой материи совершились на клеточном уровне в процессе эволюции?

Крупнейшие ароморфозы (митоз, мейоз, гаметы, половой процесс, зигота, вегетативное и половое размножение).

Возникновение ядер в клетках (эукариоты).

Симбиотические процессы у одноклеточных - возникновение органелл.

Автотрофность и гетеротрофность.

Подвижность и неподвижность.

Возникновение многоклеточных организмов.

Дифференциация функций клеток у многоклеточных.

13. Охарактеризуйте общее значение клеточного уровня живой материи в природе и для человека.

Клетка, возникнув однажды в виде элементарной биосистемы, стала основой всего дальнейшего развития органического мира. Эволюция бактерий, цианобактерий, различных водорослей и простейших целиком происходила за счёт структурных, функциональных и биохимических преобразований первичной живой клетки. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, однако общий план строения клетки не претерпел принципиальных изменений. В процессе эволюции на основе одноклеточных форм жизни зародилась многоклеточность, возникла специализация клеток и появились клеточные ткани.

Выскажите свою точку зрения

1. Почему именно на клеточном уровне организации жизни возникли такие свойства живых существ, как автотрофность и гетеротрофность, подвижность и неподвижность, многоклеточность и специализация в строении и функциях? Что способствовало таким событиям в жизни клетки?

Клетка - это основная структурно-функциональная единица живого. Это некая живая система, для которой свойственны дыхание, питание, обмен веществ, раздражимость, дискретность, открытость, наследственность. Именно на клеточном уровне возникли первые живые организмы. В клетке каждый органоид выполняет определенную функцию и имеет определенное строение, объединившись и функционируя вместе, они представляют собой единую биосистему, для которой присущи все признаки живого.

Клетка, как многоклеточный организм, также эволюционировала на протяжении многих веков. Различные условия среды, природные катаклизмы, биотические факторы привели к усложнению организации клеток.

Именно поэтому автотрофность и гетеротрофность, подвижность и неподвижность, многоклеточность и специализация в строении и функциях возникли именно на уровне клетки, где все органеллы и клетка в целом существуют гармонично и целесообразно.

2. На каком основании цианобактерии все ученые очень долго относили к растениям, в частности к водорослям, и лишь в конце XX в. их поместили в царство бактерий?

Сравнительно крупные размеры клеток (носток, например, образует довольно крупные колонии, которые можно даже взять в руки), осуществляют фотосинтез с выделением кислорода сходным с высшими растениями образом, также внешнее сходство с водорослями было причиной их рассмотрения ранее в составе растений («синезелёные водоросли»).

А в конце ХХ века было доказано, что клетки синезеленых ядер не имеют, да и хлорофилл в их клетках не такой, как у растений, а характерный для бактерий. Сейчас цианобактерии относятся к числу наиболее сложно организованных и морфологически дифференцированных прокариотных микроорганизмов.

3. Из каких растительных и животных клеточных тканей сделана одежда и обувь, в которых вы пришли сегодня в школу?

Выберите подходящие. Можно привести массу примеров. К примеру, из льна (лубяные волокна - проводящая ткань) делают ткань прочной структуры (рубашка муж., женские костюмы, белье, носки, брюки, сарафаны). Из хлопка делают нижнее белье, футболки, рубашки, брюки, сарафаны). Из кожи животных (эпителиальная ткань) делают обувь (туфли, босоножки, сапоги), ремни. Из шерсти пушных зверей изготавливают теплую одежду. Из шерсти делают свитера, носки, шапки, варежки. Из шелка (секрет желез тутового шелкопряда - соединительная ткань) - рубашки, шарфы, белье.

Проблема для обсуждения

Дед Чарлза Дарвина Эразм Дарвин - врач, учёный-натуралист и поэт - написал в конце XVIII в. поэму «Храм природы», опубликованную в 1803 г., уже после его смерти. Прочитайте небольшой отрывок из этой поэмы и подумайте, какие идеи о роли клеточного уровня жизни можно обнаружить в данном произведении (отрывок приведен в книге).

Возникновение земной жизни происходило с самых меньших клеточных форм. Именно на клеточном уровне возникли первые живые организмы. Клетка, как организм, также росла, эволюционировала, тем самым дала толчок к образованию множества клеточных форм. Они смогли заселить и «ил» и «водяную массу». Скорее всего, различные условия среды, природные катаклизмы, биотические факторы привели к усложнению организации клеток, что повлекло за собой «обретение членов» (что подразумевает многоклеточность).

Основные понятия

Прокариоты, или Доядерные, - организмы, клетки которых не имеют оформленного ядра, ограниченного мембраной.

Эукариоты, или ядерные, - организмы, клетки которых имеют хорошо оформленное ядро, отделённое ядерной оболочкой от цитоплазмы.

Органоид - клеточная структура, обеспечивающая выполнение специфических функций.

Ядро - важнейшая часть эукариотической клетки, регулирующая всю её активность; несёт в себе наследственную информацию в макромолекулах ДНК.

Хромосома – это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке.

Биологическая мембрана - эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность.

Митоз (непрямое деление клетки) - универсальный способ деления эукариотических клеток, при котором дочерние клетки получают генетический материал, идентичный исходной клетке.

Мейоз - способ деления эукариотных клеток, сопровождающийся уменьшением вдвое (редукцией) числа хромосом; одна диплоидная клетка даёт начало четырём гаплоидным.

Клеточный цикл - репродуктивный цикл клетки, состоящий из нескольких последовательных событий (например, интерфаза и митоз у эукариот), во время которых содержимое клетки удваивается и она делится на две дочерних.

Клеточный структурный уровень организации живой материи – один из структурных уровней жизни, структурно-функциональной единицей которого является организм, а единицей - клетка. На организменном уровне происходят следующие явления: размножение, функционирование организма как единого целого, онтогенез и др.

1.13. (дополнение) Универсальные свойства биосистем

При всей специфичности биосистем разных уровней, для них можно выделить ряд универсальных свойств. Назовем некоторые из них.

Определенный состав и упорядоченность . Все биосистемы характеризуются высокой упорядоченностью, которая может поддерживаться только благодаря протекающим в них процессам. В состав всех биосистем, лежащих выше молекулярного уровня, входят определенные органические вещества, некоторые неорганические соединения, а также большое количество воды. Упорядоченность клетки проявляется в том, что для нее характерен определенный набор клеточных компонентов, а упорядоченность биогеоценоза - в том, что в его состав входят определенные функциональные группы организмов и связанная с ними неживая среда.

Иерархичность организации . Как рассматривалось в пункте 1.05, жизнь проявляет себя одновременно на многих уровнях организации, каждый из которых имеет свои особенности.

Обмен веществ - важнейшая особенность функционирования биосистем. Это совокупность происходящих в них химических преобразований и перемещений веществ. На клеточном и организменном уровнях обмен веществ связан с питанием , газообменом и выделением , а, например, на биогеоценотическом - с круговоротом веществ и их перемещением между разными биогеоценозами.

Поток энергии через биосистемы тесно связан с их обменом веществ. Благодаря тому, что атомы вещества в ходе их преобразований не изменяются, вещество может совершать круговорот в живых системах. Энергия, в соответствии со вторым началом термодинамики, при превращениях частично рассеивается (переходит в форму тепла), и поэтому живые системы существуют только в условиях текущего через них потока энергии из внешнего источника. Для биосферы в целом таким источником является Солнце.

Способность к развитию . Все биосистемы возникают и совершенствуются в ходе эволюции . Эволюция на молекулярном уровне привела к возникновению организмов; благодаря эволюции популяций меняются характерные свойства организмов и всех входящих в их состав систем. Изменение биогеоценозов и биосферы также связано с их способностью к эволюции. Развитие отдельного организма называется онтогенезом ; эволюционная история вида - филогенезом ; развитие биоценозов на одном участке - сукцессией .

Приспособленность - соответствие между особенностями биосистем и свойствами среды, с которой они взаимодействуют. Приспособленность не может быть достигнута раз и навсегда, так как среда непрерывно меняется (в том числе благодаря воздействию биосистем и их эволюции). Поэтому все живые системы способны отвечать на изменения среды и вырабатывать приспособления ко многим из них. Результатом способности живых систем вырабатывать приспособления является поражающее воображение совершенство и целесообразность живых организмов и жизни в целом. Долгосрочные приспособления биосистем осуществляются благодаря их эволюции. Краткосрочные приспособления клеток и организмов обеспечиваются благодаря их раздражимости - свойству реагировать на внешние или внутренние воздействия. Определенным образом отвечают на изменения и биосистемы всех других уровней, что позволяет говорить, что они находятся в состоянии обмена информацией со средой.

Саморегуляция . Биосистемы находятся в состоянии постоянного обмена веществом, энергией и информацией с окружающей средой. Например, клетки и организмы благодаря саморегуляции поддерживают постоянство своей внутренней среды (гомеостаз), а биогеоценозы поддерживают свой видовой состав и определенные свойства неживой среды. Поддержание постоянства свойств биосистем обеспечивается благодаря отрицательным обратным связям, а их изменение и развитие - благодаря положительным обратным связям.

Динамичность (состояние непрерывных изменений). Жизнедеятельность на всех уровнях организации биосистем связана с обменом веществ и информации, а также потоком энергии. При этом каждая биосистема, начиная от клеточного уровня, является не столько структурой, сколько процессом. Так, клетка остается сама собой, несмотря на то, что в результате обмена веществ сменяются образующие ее вещества. Популяция существует, несмотря на то, что гибнут и появляются входящие в ее состав особи. Для клеток и организмов характерным проявлением динамичности является подвижность - способность к изменению положения и формы самой системы и ее частей.

Целостность (интегрированность) - необходимое условие для рассмотрения того или иного объекта как системы. Это результат взаимосвязи и взаимозависимости частей биосистем, основа возникновения у системы эмергентных свойств. Системы разных уровней отличаются по степени взаимозависимости своих частей. К примеру, в состав клетки должен входить совершенно определенный состав компонентов, строго соответствующих друг другу (если митохондрия синтезирует не все свои белки, то ядро обязательно должно управлять синтезом недостающих, и вполне соответствующих имеющимся в митохондрии). Организм состоит из определенного комплекта органов. Биогеоценоз тоже состоит из определенного набора компонентов (например, автотрофов и гетеротрофов), но их состав оказывается в большой мере заменяемым. Раз связи подсистем в клетке и организме являются более жесткими (свойства одной подсистемы требуют строго определенных характеристик другой подсистемы) чем в биогеоценозе, клетку и организм можно считать более целостными. На биогеоценотическом и биосферном уровне в состав биосистем входят как живые, так и неживые компоненты (впрочем, неживые компоненты, например отмершие ткани, могут входить и в состав организмов, а также биосистем других уровней).

Уникальность . Все биосистемы, начиная от клеточного уровня, неповторимы и отличаются от аналогичных систем. Например, имеющие идентичную наследственную информацию организмы (однояйцовые близнецы, клоны и т.д.) обладают неповторимой индивидуальностью, зависящей от бесконечно разнообразных особенностей воздействия на них среды и саморегуляции в ходе развития.

Способность к воспроизводству биосистем обеспечивает устойчивость жизни во времени. Биомолекулы синтезируются клеткой; клетки (и даже некоторые структуры эукариотической клетки) воспроизводятся путем деления. На организменном уровне воспроизводство обеспечивается благодаря размножению . Преемственность поколений на организменном (а также на клеточном) уровне обеспечивается наследственностью , а возможность эволюции - изменчивостью . Воспроизводство популяций, биогеоценозов (а быть может и биосферы) обеспечивается не только размножением организмов, но и благодаря их способности к расселению.

Эволюция живого привела к формированию существующего ныне на планете биоразнообразия. За всю историю Земли на ней обитало от одного до двух миллиардов видов живых существ, большая часть которых вымерла. Однако и современное многообразие биологических видов потрясающе велико. Ученым известно не менее 1,4 млн. видов, обитающих на планете, в том числе не менее 4000 видов млекопитающиих, 9000 – птиц, 19000 рыб, 750000 насекомых, 210000 цветковых растений. Учитывая еще не описанные виды, общее число видов оценивается в диапазоне 5-30 млн. (Грант, 1991). «Полагают, что сейчас на нашей планете обитает свыше миллиона видов животных, 0,5 млн. вида растений, до 10 млн. микроорганизмов, причем эти цифры занижены» (Медников, 1994).

Такие различные организмы, как крошечные бактерии и гигантские синие киты, одноклеточные корненожки и человекообразные обезьяны, цветковые растения и насекомые – все входят в состав единого планетарного «тела биоса». Подобно целостному организму, биос зависит в своем существовании от гармоничного, слаженного функционирования всех “систем органов”. В роли “органов” и их “систем” выступают разнообразные группы живых существ. Описание этого био-разнообразия в различных его аспектах и гранях весьма важно как с точки зрения охраныэтого разнообразия, так и в концептуальном плане. Для биополитики особенно существенное значение имеет приложе­ние принципа, аналогичного “биоразнообразию”, к политическим системам с их плюрализмом, взаимодополни­тель­ностью и взаимозависимостью. Понятие “биоразнообразие” включает несколько различных аспектов.

3.3.1. Разнообразие видов живого с точки зрения систематики. Виды группируются в роды, роды – в семейства и т.д., пока мы не доходим до самых крупных из основных подразделений многообразия живого – империй, которые подразделяются на царства.. Наиболее фундаментальное различие современные систематики усматривают между прокариотами («доядерными») иэукариотами («истинноядерными»). Это и есть две империи: к империи прокариот (Prokaryota ) относятся микроскопические существа – бактерии; к империи эукариот (Eukaryota ) -- все остальные формы жизни – простейшие, грибы, растения, животные (включая человека).

«Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ - единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость… Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной.» (Гусев, Минеева, 2003). В пределах каждой империи различные авторы выделяют различное количество царств. Так в классификации Уиттекера (Whittaker, 1969) империя эукариот дробится на 4 царства – протисты, или простейшие, грибы, растения и животные, а прокариоты (синоним – монеры) считаются единым царством. В нижеследующей классификации от схемы Уиттекера допущено единственное отступление – прокариоты поделены на 2 царства – эубактерий и архей (архебактерий), что соответствует фундаментальному характеру различий между ними.

1. Империя прокариот (Prokaryota ). Организмы, в большинстве случаев представляющие собой одну клетку. Недостижимое для других групп разнообразие условий обитания и часто невероятная пластичность. Типы питания весьма разообразны. Их характеризуют по природе источников трех необходимых компонентов жизни: энергии, углерода и водорода (источника электронов). По источнику энергии различают две категории организмов: фототрофы (использующие солнечный свет) и хемотрофы (использующие энергию химических связей в питательных веществах. По источнику углерода выделяют автотрофы (СО 2) и гетеротрофы (органическое вещество). Наконец, по источнику водорода (электронов) различают органотрофы (потребляющие органику) и литотрофы (потребляющие производные литосферы – каменной оболоочки Земли: Н 2 , NH 3 , H 2 S, S, CO, Fe 2+ и т.д.) По такой классификации зеленые растения (см. ниже) – фотолитоавтотрофы, животные и грибы – хемоорганогетеротрофы. В мире прокариот встречаются самые разнообразные сочетания. Прокариоты могут быть далее подразделены на

· Царство эубактерии (Eubacteria, «обычные бактерии»). Клеточная стенка обычно содержит специфическое вещество – пептидогликан (муреин). Царство включает разнообразных представителей – от мирных сожителей человека типа кишечной палочки (Escherichia coli ) до опасных патогенов (возбудителей чумы, холеры, бруцеллеза и др.), от обогатителей почвы ценными азотистыми веществами (например, представители рода Azotobacter ) до окислителей железа (железобактерии Thiobacter ferooxidans ) и тех, кто способен фотосинтезировать подобно растениям, в том числе и с выделением кислорода (цианобактерии). В последние годы в некоторых работах царство «бактерии» делят на несколько самостоятельных царств.

· Царство археи(или архебактерии – Archaea или Archaebacteria ), обитающие в экзотических условиях (одни в полном отсутствие кислорода; другие – в насыщенным растворе соли; третьи – при 90-100 о С и т.д.) и имеющие своеобразное строение клеточной стенки и внутриклеточных структур. По некоторым признакам (например, организация рибосом) археи ближе не к про-, а к эукариотам («сестринская связь» архей и эукариот, см. Воробьева, 2006).

2. Империя эукариот (Eukaryota ). Как уже подчёркивалось, в империю эукариот входят организмы с вторичными полостями клеткок – органеллами, включая и ядро. Эукариоты включают в себя царства: простейшие, грибы, растения и животных:

· Царство простейшие (Protista ) Одноклеточные или колониальные (рыхлое объединение способных существовать самостоятельно клеток) организмы, имеющие клеточное ядро, окруженное двойной мембраной. По способу получения энергии делятся на группы, напоминающие 3 царства, данные ниже (есть протисты, подобные грибам, растениям и животным).

· Царство растения (Plantae ). Многоклеточные организмы, способные к усвоению энергии света (фотосинтезу) и потому часто не нуждающиеся в готовых органических соединениях (ведущие автотрофный образ жизни). Вода, минеральные соли и в некоторых случаях органика поступают путем всасывания. Растения поставляю органику для других царств живого и вырабатывают живительный кислород (последняя роль в известной мере выполняется также прокариотами – цманобактериями).

· Царство животные (Animalia ).Многоклеточные организмы, питающиеся готовыми органи­ческими соединениями (ведут гетеротрофный образ жизни), которые они приобретают посредством активного питания и передвижения, причем преимущественным объектом питания служат живые организмы. В рамках данной книги особый интерес представляют организмы с ярко выраженной социальностью – способностью формировать сложные надорганизменные системы с разделением функций, координацией поведения особей в масштабе всей системы. Таковы колониальные кишечнополостные, чьи колонии порой напоминают единый организм (сифонофоры), насекомые типа термитов, пчел или муравьев, чья социальная жизнь издавна вызывала восхищение у мыслителей и навевала аналогии с человеческим социумом (например, отраженную в басне XVIII века «О пчёлах», принадлежащей перу Мандевилля) и, наконец, хордовые, особенно млекопитающие.

«Командные посты» в биосфере Земли занимают представители типа хордовых: рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие во главе с человеком. Для них характерны следующие признаки:

· Хорда (спинная струна) – ось внутреннего скелета, упругий гибкий стержень.У высших хордовых имеется лишь на ранних стадиях развития зародыша, вытесняясь затем позвоночником.

· Центральная нервная система (спинной и головной мозг) имеет трубчатое строение и образуется как впячивание спинной стороны зародыша.

· У всех хордовых, по крайней мере на стадии зародыша, имеются жаберные щели – парные поперечные отверстия, прободающие стенку глотки.

Самый высокоорганизованный класс хордовых – млекопитающие (звери). Они имеют постоянную высокую температуру тела, высокоразвитую нервную систему. В первую очередь головной мозг. Рождают детенышей, которые развиваются в теле матери, получая питание через плаценту, а после рождения вскармливаются молоком» (Медников, 1994).

3.3.2. Разнообразие внутри одной таксономической группы живых существ , в частности внутри одного вида (скажем, разнообразие внутри вида кошка домашняя). Это разнообразие, в свою очередь, включает в себя ряд важных аспектов. Так, можно говорить о разнообразии группировок особей внутри одного и того же вида живого. Например, все обезьяны шимпанзе относятся к одному виду, но наблюдаются различия в поведении и языках общения, а также ритуалах у разных групп шимпанзе. Приматолог де Вал отмечает, что только в одной из изученных им групп шимпанзе обезьяны приветствовали друзей, поднимая над головой руки и пожимая их. Не менее важно разнообразие и внутри одной такой группы - будь то прайд львов или колония микроорганизмов.

Во-первых, особи различаются по возрастам (“возрастная пирамида”), а во многих случаях по половым характеристикам. Даже у бактерий могут быть два типа особей - F+ и F- клетки (у кишечной палочки, населяющей кишечник человека).

Во-вторых, имеются бесчисленные индивидуальные вариации. Биополитики обращают внимание на то, что и у человека в семьях велики индивидуальные различия, например, между братьями. И в человеческом обществе, и в группах любого другого вида живого такое разнообразие представляет результат сложного взаимодействия врожденных (генетических) характеристик и влияния различий в условиях жизни (факторов окружающей среды). Отметим, что даже в одной семье у человека в разных условиях живут старшие и младшие братья, любимые и нелюбимые дети.

На все эти индивидуальные отличия налагаются еще различия, диктуемые распределением ролей и функций во всей группе, семье, колонии, вообще биосоциальной системе. И тогда оказывается, что для разных социальных ролей лучше подходят особи с различными задатками, а также разные роли могут быть распределены по возрастам и полам индивидов. Например, при всем своем “эгалитаризме” (равенстве по богатству, авторитету, рангу, см. ниже, 3.7) первобытное общество учитывало возрастные, половые и просто индивидуальные различия. Мужчины в основном охотились, женщины - собирали плоды, коренья, ягоды и в большей мере участвовали в воспитании детей; люди преклонного возраста преимущественно становились старейшинами, шаманами, в то же время вождь во время войны чаще был молодым человеком. Люди с индивидуальными талантами могли их развивать - художественные дарования делать наскальные рисунки, искусные танцоры и рассказчики веселить соплеменников своими плясками и повествованиями, соответ­ственно.

Поэтому биоразнообразие во всех своих гранях поистине является необходимой предпосылкой оптимального, гармоничного функционирования целого анасамбля живого - биосферы. Организмы с различными характеристиками и требованиями к среде обитания, вступающие в разнообразные отношения друг с другом, могут быть функционально специализированны в рамках "тела биоса". Каждый из биологических видов может представлять собой жизненно важный орган этого "тела". Есть многочисленные примеры отрицательных глобальных последствий уничтожения одного только биологического вида.

3.3.3. Уровни организации живых организмов. Одним из важных аспектов биоразнообразия служит многоуровневость живых объектов. Читателю рекомендуем вернуться на мгновение в конец раздела 2.1 выше, где мы коснулись вопроса о многоуровневости (многослойности) мира в целом. В рамках приведенной нами схемы Н. Гартмана живое соответствует «органическому» слою (хотя и не исчерпывается им, проявляя элементы «душевного» и даже «духовного» -- на чем собственно и зиждется возможность сопоставительного биополитического подхода к человеку и другим формам живого). Но, даже оставаясь в рамках органического слоя (уровня), мы можем выделить в нем несколько уровней второго порядка – их Гартман (Hartmann, 1940) называл «ступенями бытия» (Seinsstufen). Эти «ступени бытия» – уровни внутри биологического – служат критерием различения живых объектов. Многоклеточный организм (растение, животное, гриб) отличается от одноклеточного, ибо имеет внутри себя дополнительные уровни организации (тканевый, организменный – чуть ниже мы приведём наш вариант шкалы этих уровней).

Любой единичный биологический объект (клетка бактерии, цветущее растение, обезьяна бонобо и др.) представляет собой сложно организованную систему, состоящую хотя бы из нескольких уровней, из числе приведённых ниже. Ситуация несколько напоминает русскую матрёшку, в которой находятся более маленькие матрёшки. Разные авторы, кроме упомянутого критерия «части и целого», вводят различные другие критерии вычленения уровней (размер, сложность организации и др.), предпочитают выделять разные уровни в качестве главных. Были предложены разнообразные конкретные схемы уровней живого, где выделяется от 4 до 8 (например, см. Кремянский, 1969; Сетров, 1971; Miller, 1978; Miller, Miller, 1993) уровней. Ниже мы приводим свою схему, как бы представляющую общий знаменатель взглядов различных авторов:

1. Молекулярный (молекулярно-биологический). Молекулы, которые служат строительными блоками биосистем (роль белков, полисахаридов и других крупных органических молкул – биополимеров), носителями наследственной информации (нуклеиновые кислоты – ДНК и РНК), сигналами для коммуникации (часто малые органические молекулы), формами запасания энергии (в первую очередь АТФ) и др.

2. Субклеточный (внутриклеточный). Сложенные из молекул микроструктуры (мембраны, органеллы и др.), входящие в состав живой клетки.

3. Клеточный. Уровень имеет особое значение, так как клетка (в отличие от отдельной молекулы или органеллы) есть элементарная единица жизни. Многие особи всю жизнь существуют в виде одной клетки – одноклеточные. У многоклеточных клетки не расходятся, а образуют единый организм. Например, человеческий организм состоит примерно из 10 15 клеток.

4. Органно-тканевый уровень. Принцип «матрешки» работает и дальше. У многоклеточных существ однотипные клетки формируют ткани, из которых состоят органы растений (лист, стебель и др.) и животных (сердце, печень и др.).

5. Организменный уровень. Целое живое существо (заметим, что у одноклеточных форм жизни, например, простейших, бактерий, понятия клеточный и организменный уровни тождественны друг другу). В рамках этого уровня рассматриваются не только специфические структуры и функции того или иного живого организма, но и поведение биологических индивидов, гамма их взаимоотношений между собой, что ведет к формированию надорганизменных (биосоциальных) систем. Здесь мы видим переход к еще более высоким – надорганизменным – уровням организации

6. Популяционный уровень. Уровень группировок особей одного вида (популяций).

7. Экосистемный (биоценотически-биогеоценотический) уровень. Уровень сообществ многих видов организмов, формирующих единую локальную систему (биоценоз), причем часто в рассмотрение включаются также окружающая организмы среда (ландшафт и др.); в этом случае вся система называвется экосистемой (биогеоценозом).

8. Биосферный уровень. Соответствует всей совокупности живых организмов планеты, рассмотренной как целостная система (биосфера, биос в терминологии Агни Влавианос-Арванитис).

Это общий очерк уровней живого, классификация которых значительно различается у разных исследователей, которые привносят в уровневые классификации свои специфические интересы. Более того, новые научные открытия время от времени вводят в обиход новые, ранее не признававщиеся уровни. Пример: исследования лабораторий В.Л. Воейкова и Л.В. Белоусова на биологическом факультете МГУ, вслед за более ранними работами Н.Г. Гурвича позволили предположить наличие еще одного уровня биоса (между молекулярно-биологическим и субклеточным) – уровня молекулярных ансамблей. Подобные ансамбли (например, молекула ДНК) уже обладают многими “живыми” свойствами, такими как память, активность, целостность (когерентность).

В предлагаемой ниже таблице обозначены важнейшие характеристики уровней организации живого и их социальные приложения. В принципе каждый из основных уровней организации биосистем имеет биополитически важные аспекты. Каждый уровень допускает достаточно плодотворные аналогии и экстраполяции, дающие пищу для ума для исследователей человеческого социума с его политическими системами.

Таблица. Уровни организации живого и их биополитическое значение

Уровни организации Биополитически важные аспекты
Молекулярно-биологический Биополимеры (нуклеиновые кислоты, белки и др.). Молекулярная генетика. Генетика поведения человека. Психогенетика. Генное разнообразие человечества. Расы. Генетические технологии
Клеточный, органно-тканевый (внутриорганизменный) Регуляторные факторы. Межклеточная коммуникация. Нейромедиаторы. Гормоны. Функционирование нервной системы и ее блоков (модулей). Нейрофизиология психики и поведения.
Организменный, популяционный (биосоциальный) Поведение вообще. Социальное поведение и его политические аспекты. Биосоциальные системы. Иерархические и горизонтальные (сетевые) структуры. Политическая система с биосоциальной (биополитической) точки зрения.
Экосистемный, биосферный Разнообразие экосистем. Охрана био-окружения как задача биополитики. Экологический мониторинг. Экосистемы внутри человеческого организма (микробиота) и их роль в поддержании соматического, психического и социального здоровья людей.

На молекулярно-биологическом уровне биополитический интерес представляют так называемые шапероны (от англ. chaperon – пожилая дама, сопровождающая молодую девушку) – белковые молекулы, которые обеспечивают функционально правильную укладку других молекул (например, ферментов). Представляется, что самоорганизующиеся политические движения современности, в том числе всякого рода сетевые структуры (см. о них 5.7 ниже) должны находиться под влиянием некоторых помогающих организаций-«шаперонов», которые направляли бы их деятельность в разумное русло. Создание аналогичных «шаперонов» на уровне целого государства, которые бы направляли демократический процесс по наиболее конструктивному руслу, не отнимая у участников этого процесса простор для деятельности, а только создавая им оптимальные условия, в том числе и в плане жизненных потребностей людей (осуществляя «биополитику» в понимании М. Фуко) – вот, по мысли автора данной книги, «рациональное зерно» политического термина управляемая демократия.

На клеточном уровне несомненную ценность представляет предложенное Р. Вирховым в XIX в. (см. 1.1) сравнение тканей в составе многоклеточного организма с «клеточными государствами», а закономерностей роста и деления клеток – с социальными нормами поведения граждан в государстве. Сравнение целого организма с политической системой – базисная аналогия для организмического подхода в социологии и политологии (см. Франчук, 2005а, б).

Однако наибольшее значение для биополитики имеет сопоставление биосистем на их популяционном уровне с объектами политологии. Взаимодействие индивидов в составе биосоциальных систем в сопоставлении с политическими системами человеческого общества будет основной темой четвертой и пятой глав настоящей книги.

Интерес представляют, впрочем, и еще более высокие уровни организации биосистем. Например, представляя генетически единый биологический вид, человечество тем не менее состоит из различных культур (с разными нормами поведения). С известным правом человечество в культурном плане можно рассматривать как аналог многовидовой ассоциации (биоценоза).

1.05. Уровни организации биосистем

Вся живая материя восстает перед нами как одно целое, как один огромный организм, заимствующий свои элементы из резервуара неорганической природы, целесообразно управляющий всеми процессами своего прогрессивного и регрессивного метаморфоза и, наконец, отдающий снова всё заимствованное назад мертвой природе.
С.Н. Виноградский. Лекция перед императорской семьей 8 декабря 1896 г.

Экология рассматривает взаимосвязи со средой обитания живых систем: организмов, популяций, экосистем, биосферы. Чтобы разобраться в разнообразии этих биосистем, необходимо рассмотреть само понятие «система». Оно происходит от греческого systema - составленное из частей; соединение. По одному из самых простых, но вполне пригодных для данного случая определений система есть упорядоченное целое, состоящее из взаимосвязанных частей .

Аристотелю, «отцу всех наук», принадлежит афоризм: «целое больше суммы своих частей». Что он имел в виду? Ясно, что в некоторых случаях (например, при сложении) целое как раз и является суммой своих частей! Например, вес компьютера в точности равен весу всех его комплектующих. Но обладают ли комплектующие компьютера, взятые по отдельности, способностью обрабатывать данные, преобразовывать и воспроизводить изображения, принимать и передавать информацию? Естественно, эти качества детали компьютера приобретают, только будучи соединены определенным образом. Именно поэтому, давая определение системы, мы подчеркнули, что она является упорядоченным целым.

Итак, свойства систем можно разделить на две группы: те, которые являются суммой свойств ее частей, и те, которые возникают у системы, как у единого целого. Назовем эти свойства. Аддитивные свойства системы (лат. additio - прибавление) являются суммой свойств ее частей. Качественно новые свойства системы называются эмергентными (лат. emergere - всплывать, появляться). Зачастую английское прилагательное «emergent » передают по-русски как «эмерджентный», что не соответствует сложившейся традиции передачи буквы «g » в терминах: мы ведь говорим и пишем «ген», а не «джен», несмотря на английское «gen »!

Биологические системы организованны иерархически, и на каждом уровне осуществляется регуляция, использующая сходные принципы. В конце XX века получил развитие системный подход, идущий от Людвигу фон Берталанфи. Он основан на том, что системы, состоящие из сходно взаимосвязанных частей, имеют сходные целостные (эмергентные) свойства.

Сравнивая системы разного уровня, можно увидеть между ними много общего, а можно и найти черты специфичности каждого из уровней. Осмысление этих закономерностей вылилось в концепцию структурных уровней организации биосистем , которая начала развиваться в 30-х годах XX века, а окончательно сложилась в 60-х годах. Так, принято выделять следующие уровни организации биосистем: молекулярный - (генный) - (субклеточный) - клеточный - (органно-тканевой) - (функциональных систем) - организменный - популяционный - биогеоценотический - биосферный. В приведенном списке уровни, взятые в скобки, можно считать относительно менее важными, чем уровни без скобок.

Различные уровни биосистем следует выделять потому, что каждый из уровней характеризуется свойствами, отсутствующими на нижележащих уровнях. Универсальный перечень уровней организации биосистем составить невозможно. В зависимости от того, какие биосистемы и с какой точки зрения изучаются, надо выделять больше или меньше уровней, на каждом из которых возникают какие-то эмергентные свойства. Целесообразно выделять такое число уровней, чтобы каждому из них были присущи свойства, изучение которых на нижележащем и вышележащем уровнях невозможно. Полное изучение системы должно включать также изучение вышестоящих- и нижележащих систем («надсистем» и подсистем).

Так, демографическая структура популяции отсутствует на уровне отдельного организма, а феномен человеческого сознания отсутствует на уровне отдельных структур мозга. Феномен жизни возникает на клеточном уровне, а феномен потенциального бессмертия - на популяционном. Организм является единицей естественного отбора. Специфика биогеоценотического уровня связана с составом его компонентов и круговоротом веществ (сопровождающимся потоками энергии и информации), а биосферного уровня - с замкнутостью круговоротов веществ. Примеры эмергентных свойств некоторых биосистем приведены в таблице 1.5.1.

Таблица 1.5.1. Примеры биосистем различных уровней и их эмергентных свойств

Уровень

Пример

Эмергентные свойства

Молекулярный

Молекула белка

Обладает характерной конформацией, способна к выполнению определенных функций в клетке

Клеточный

Обладает основными свойствами живых систем: способна к обмену веществ, размножению и т.д. У одноклеточных обладает свойствами организма, у многоклеточных предназначена для выполнения определенной функции

Органно-тканевой

Нейронная сеть

Управляет клеточной жизнедеятельностью (делением, обменом веществ, функциональной активностью). Способна к обработке информации и выполнению определенных кибернетических функций

Организменный

Является единицей естественного отбора: как целое гибнет или выживает и размножается. Обладает индивидуальностью, возникающей в результате онтогенеза

Популяционный

Популяция раздельнополых организмов

Обладает потенциальным бессмертием и способностью к эволюции. Характеризуется определенной половозрастной, пространственной, генетической, иерархической структурой

Биогеоценотический

Биогеоценоз

Способен к развитию (сукцессии), осуществляет частично замкнутый круговорот веществ

Биосферный

Биосфера

Осуществляет замкнутые биогеохимические циклы (с учетом обмена веществом с космосом и земными недрами). Регулирует некоторые свойства планеты (гипотеза Геи). Способна к биосферной эволюции

Выделение надорганизменных структурных уровней биосистем может производиться по двум различным принципам. С экологической (функционально-энергетической) точки зрения, популяция является частью биогеоценоза, а он - частью биосферы. Этот подход в основном соответствует экологическому определению популяции. С филетической (связанной с филами - эволюционными ветвями), т.е. генетико-эволюционной точки зрения, популяция является частью вида и надвидовых таксонов (что соответствует генетическому подходу к определению популяции, см. пункт 4.1).